時分割XAFS

高エネルギー加速器研究機構 物質構造科学研究所 放射光科学研究施設 野村 昌治 XAFSのおさらい 時間分解能を決めるもの QXAFS DXAFS その他の時間分解XAFS 試料環境制御 XAFSと時間分解 今後への課題

XAFSの特徴のおさらい

X線吸収原子の周りの構造を 選択的に得られる 試料の相を選ばない(固相、 液相、気相) 環境を選ばない(高温、高圧、 雰囲気を任意に設定可) 異種原子との混合物可 局所構造情報 非破壊測定 測定、解析が比較的容易 感度が高い(特に蛍光法)

担持触媒等の研究に多く 用いられている ・ 化学反応を追跡したい 外場による変化を追跡したい

通常の測定域: 2.3~42keV K端: S~Ce L端: Nb~

時分割XAFSで何を測定したいか

- 短時間でXAFSを測定したい。
- •時間と共に変化する様を観測したい(定性的)。
- 反応速度、活性化エネルギーを求めたい(定量的)。
- 励起状態、準安定状態に関する情報を得たい。

時間分解XAFS?

M. Nomura, A. kazusaka, Y. Ukisu and N. Kakuta, J. Chem. Soc., Faraday Trans., 83, 2635 (1987).

*

時間分解能を決めるもの

➤ 対象とする系の変化時間(速度)

▶ 実験技術 - 従来法を高速化するという発想で

a. 光子束

- b. 分光器の掃引時間
- c. 検出器の時間分解能

d. 反応制御の時間分解能

e.その他の課題

<u>a. 光子束</u> (従来法でどこまで短縮できるか)

$\Delta t = fm / (I_0 n)$

- △t: 最短スペクトル測定時間
- f: 1データ点毎に必要な光子数
- 1. 得られる単位時間当たりの光子数
- m: XAFSスペクトルを構成するデータ点数
- n: 繰り返し測定回数

理想条件下での透過法XAFSのS/N比

$$I_0$$
による吸収(μx)_d=0.245、試料による吸収 $\mu_T X$ =2.55で、
 S/N =1を求めると
 $\Delta \mu_A/\mu_T$ =10⁻⁴ f=3 × 10⁸
 $\Delta \mu_A/\mu_T$ =10⁻³ f=3 × 10⁶ $\frac{S}{N}$ =0.556 $\frac{\Delta \mu_A}{\mu_T}\sqrt{f}$
Rev. Mod. Phys., **53** (1981) 769.

試料の最適厚さ - 理想条件から外れた時

通常の放射光を用いた実験で はそれ程神経質になる必要は ないが、積分光子数が少なく なると要注意。

 $I_{\rm IN}$ = 8×10⁸ph (μx)₀ = 0.12 $k^3 \chi$ =1A⁻³ at k=16A⁻¹ **銀箔の**k=16A⁻¹付近でのS/N比 16³=4096 χ =2×10⁻⁴ 実際にはこの上にbackgroundがのる 7

PFのXAFS-BLで得られる光子数

*

最短測定時間の見積もり

$\Delta t = fm / (I_0 n)$

**

△t: 最短測定時間
 f: データ1点毎に必要な光子数
 *I*₀:得られる単位時間当たりの光子数
 m:XAFSスペクトルを構成するデータ点数
 n: 繰り返し測定回数

理想条件下での透過法XAFSのS/N比

$$(\mu x)_{d}=0.556 [I_{0}], \mu_{T}X=2.55 [試料]で、S/N=1を求めると
 $\Delta \mu_{A}/\mu_{T}=10^{-4}$ f=3 × 10⁸
 $\Delta \mu_{A}/\mu_{T}=10^{-3}$ f=3 × 10⁶ $S_{N}=0.556 \frac{\Delta \mu_{A}}{\mu_{T}} \sqrt{f}$
Rev. Mod. Phys., 53 (1981) 769.$$

 $I_0 = 3 \times 10^{10} \text{ ph/s}, f = 3 \times 10^8, n = 1, m = 1$ $\Delta t = 10 \text{ ms}$ m = 1000 $\Delta t = 10 \text{ s}$

1点当たり何秒も信号を蓄積する必要ないじゃないか!

要するに、原理(光子統計)的には

- 条件が良ければ、普通の放射光施設では、スペクト ル当たり十秒程度で十分なS/Nを得るだけのX線光 子束がある。
- 繰り返し測定が許されれば、更に短時間(1/n)で測定可能。
- X線強度が高ければ、その分短時間で測定可能。
- ・試料濃度、厚さ等条件が悪ければ、その分積算時間を増す必要がある。

X線強度は強ければ良いか?

- 検出器の応答の直線性
 例: 9Aでは他のBLよりIC
 に高い電圧を印加するか
 軽いガスを使う必要がある。
- 試料の損傷
 例: BL-9AでMnO₄-の還
 元は無視できない。

試料とX線の相互作用が問題とならない範囲で高強度が望ましい。

<u>b.分光器の掃引時間</u>

分光器の角度送り: 36000 pulse/deg モーターの最高速度: 8000 pulse/s 4.5s/deg

Si(111)分光結晶使用 時の掃引角度 20~21keV 0.25° 15~16keV 0.48° 10~11keV 1.05° 5~6keV 4.05° 3~4keV 11.60° $\theta = \sin^{-1}(\frac{hc}{2dE})$

最高速度

Bragg角が低角側では掃引角度が 狭いので、容易に実現可能。

<u>c. 検出器の時間分解能</u>

- 電離箱: ms
- 電流アンプ:通常は100msのrise timeに設定
 時間分解実験では短縮する必要がある。
 一方で、ノイズは大きくなる。

電流アンプ(Keithley 427)のゲイン ノイズ電流 (rise time) 10⁸ V/Aレンジ 1×10⁻¹¹A (60µs), 2×10⁻¹²A (1ms) 10¹⁰ V/Aレンジ 2×10⁻¹²A(400µs), 2×10⁻¹⁴A (100ms) 10¹¹ V/Aレンジ 4×10⁻¹³A(1.5ms), 3×10⁻¹⁵A (330ms)

SSD:最大計数率は 1~4×10⁵ph/s
 10素子だと ×10

測定時間を制約する条件のまとめ

	EXAFS	XANES
	(<i>m</i> =1000点)	(<i>m</i> =100点)
光子束	10s	1s
分光器	1s(高E)~ 50s(低E)	0.1s~5s
検出器	1s	0.1s

PFの偏向電磁石光源を使って、単発現象を追跡しようとすると この程度が最短測定時間。

それなら分光器を速〈駆動して、短時間で測定しよう Quick XAFS

*

Quick XAFS (QXAFS)

QXAFS - ハード的には

- 検出器(電離箱)は通常測定と同じ。
- 電流アンプのrise timeを短く設定。
- VFC + スケーラー を DMM(PF)やADC(SP8)
 に置き換える 制御ソフトの選択
- 短時間にBragg角を読み取るために、読み取り
 回路を変更(QXAFSのできるBLでは通常測定 も)。

VFC: Voltage to Frequency Converter

DMM: Digital Multi-Meter

ADC: Analog to Digital Converter

QXAFSの特徴

通常のXAFS実験と基本的に同じ構成 既存のビームラインに組み込め、共存できる 種々の検出法(透過法、蛍光法、転換電子収量法) (等)を利用可能 機械的な再現性が求められる XANESの微小な変化を議論する時は要注意 スペクトルの各点で観測している時刻が異なる スペクトル測定時間より十分に遅い変化測定用

> 一般的には十秒~分オーダーの時間分解。

時間分解XAFS @ PF

分光器の最短掃引時間

触媒の活性化過程の追跡

XANES

Niの状態は水の脱離・生成に対応して変化している

Fitting Results (Ni – O)

QXAFSの高速化

- 光子束の向上 挿入光源の利用
 試料の損傷とのtrade off
- 分光器<mark>駆動速度</mark>の向上 channel-cut等の小型・軽量・安定化 ビーム位置の変化、試料の均一性
- 検出器応答速度の向上 信号を大きくすることで、アンプの時定数 を短くする。 より高速な検出器を選択する

二結晶分光器とchannel-cut分光器

D const.channel-cut mono.h const.狭義の二結晶分光器

*

channel-cut分光器ではエネルギー掃引時に試料上の異なる場所を見ることに注意

高速クイックXAFS計測法 SPring-8 BL40XU

高速クイックXAFS

分光器を高速に角度スキャンしながら、
 分光器角度と検出器出力を連続計測・保存

T. Uruga et al., AIP Conf. Proc., 882, 914 (2007)

高速クイックXAFS計測法

QEXAFS法の応用

$(NH_4)_2Cr_2O_7$ Cr_2O_3 の水素還元 20ms毎 H. Bornebusch *et al. J. Synchrotron Rad.*, **6**, 209 (1999)

Figure 3

In situ reduction of $(NH_4)_2Cr_2O_7$ in a gas flow of H_2 at $T \approx 192^{\circ}C$ measured in the vicinity of the Cr K-edge (20 ms/spectrum, 30 spectra are shown, 25 Hz modulation of the monochromator crystals, 200 kHz ADC sampling rate); the displayed voltage range corresponds to an energy range of about 20 eV. The rapid thermal decomposition of the Cr-compound can clearly be monitored as can be seen in the insert, where the integrated intensity of the Cr^b preedge peak at about 5993 eV (0 V piezo voltage) is displayed as a function of time.

Dispersive XAFS (DXAFS)

- [原理]入射X線の波長分散を角 度分散に変え、位置敏感検 出器で全領域を一度に測定 マルチチャンネル測定
 - 機械的に動〈部分が無いので 高速化が可能
 - 全領域同時測定なので単発 現象を追える
 - 多様な検出法を適用困難
 - 特殊な光学系が必要
 - 試料の均質性に敏感
- ·ミリ秒オーダーの時間分解 サブnsも

Geometrical arrangement of the dispersive X-ray absorption spectrometer. Refer to text for details. The glancing angle, θ_i , of the primary X-ray beam, varies continuously across the crystal surface (θ_1 to θ_n) and results in different X-ray energies being reflected from different points on the crystal surface.

T. Matsushita and P. Phizackerley, *JJAP* **20**, 2223 (1981).

A.M. Flank, A. Fontaine, A. Jucha, M. Lemonnier and C. Williams, *J. Phys. (Paris)*, **43**, L315 (1982).

日本発の技術

時間分解XAFS @ PF

光学条件: p: 光源 ~ 結晶 q: 結晶 ~ 集光点 R: 弯曲半径 θ: Bragg角

カバーできるエネルギー範囲 /: 結晶の長さ $\Delta E = E \cot \theta \Delta \theta$ $= lE \cot \theta \left[\frac{1}{R} - \frac{\sin \theta}{p} \right]$ $E = E \cot \theta \left[\frac{1}{R} - \frac{\sin \theta}{p} \right]$ $E = E \cot \theta \left[\frac{1}{R} - \frac{\sin \theta}{p} \right]$ $E = E \cot \theta \left[\frac{1}{R} - \frac{\sin \theta}{p} \right]$ $E = E \cot \theta \left[\frac{1}{R} - \frac{\sin \theta}{p} \right]$ $E = E \cot \theta \left[\frac{1}{R} - \frac{\sin \theta}{p} \right]$ $E = E \cot \theta \Delta \theta$ $E = E \cot \theta \Delta \theta$ E = 1.3 keV, w = 2.2 cmE = 2.9 keV, w = 1.5 cm

偏光電磁石、Multi-Pole Wiggler

NW2Aで得られるビーム幅は約1cm

入射ビーム幅 $w=l\sin\theta$

w

NW2Aの光源: Tapered undulator

エネルギー幅を拡げるため、テー パーを付けられるアンジュレーター

_u = 4cm, *N* = 90 periods high emittance光源の御利益

S. Yamamoto *et al.*, AIP Conf. Proc., 705, (2004). 31

beamline and DXAFS system: NW2A

DXAFS equipment: NW2A

Bragg case & Laue case

f): Conventional XAFS (BL-10B), Bragg, Pd k edge

検出系

×線強度は高いので、
 × パルス計数型検出器
 電荷蓄積型の検出器
 X線を直接検出
 PAD (XSTRIP)
 高速読み出し回路の付
 いたフォトダイオード列
 高速(µS)
 × 読み出しが遅い

SPring-8, ESRF...

Photo Diode Array (25/50µm×2.5mm×1024/512ch) PDA直接検出、 蛍光体 + ファイバー + PDA 安価、読み出しが速い(∆*t*=2ms)、大きな信号 <u>× 一次元のみ</u>

× 高価

検出器によるスペクトルの差

Energy resolution

DXAFS gives sufficient energy resolution

Dispersive and usual XAFS spectra

DXAFS requires highly uniform sample.

X-rays of different energies pass different sample position.

:f.) M. Hagelstein, et al., J. Synchrotron Rad., 5, 753 (1998)

DXAFSによるアルミナ担持パラジウムの還元反応

還元反応

アルミナに担持されたPdOの水素による還元反応過程10ミリ秒ごとに観察

通常の時分割XAFS (QXAFS、DXAFS)

1.26µs

probe(観測)

SRパルス

時間分解能はSRのパルス幅で決まる

DXAFSとQXAFSの比較

DXAFS

- 機械的に動〈部分が無いの で高速化が可能
- 全領域同時測定なので単発 現象を追える
- 多様な検出法を適用困難
- 特殊な光学系、検出系が必 要
- ·秒オーダーの時間分解 サブnsも

Quick XAFS

- 通常のXAFS実験と基本的に同 じ構成
- 種々の検出法(透過法、蛍光法、 転換電子収量法等)可能
- 機械的な再現性が必要 XANESの微小な変化を
- 議論する時は要注意
- 測定時間 構造変化が必要 スペクトルの最初と最後で観測 している時刻が異なる
- · 秒 ~ 分オーダーの時間分解 20msもある

DXAFSとQXAFSの比較

QXAFSとDXAFSのスペクトルの違い

Fe(0) FeOの変化を1スペクトルで測 定した場合のシミュレーション

DXAFS:時間ごとに状態が異なる<u>全スペクトルの平均</u>。 QXAFS:エネルギー(時間)ごとに試料の<u>状態が異なる</u> <u>吸光度のプロット</u>。

QXAFS、DXAFS以外の時間分解XAFS実験法

試料側での工夫

- ・急速凍結法
 反応後一定時間で急速に凍結
 し、反応中間体を固定
- ・フロー法

試料をフローしながら反応点か らの距離で時間を制御 <mark>実験装置側での工夫</mark> ・Quick XAFS ・step-scan法 ・DXAFS法 ・レーザープラズマ光源の利用

・電子ビームを振る方法

<u>急速凍結法</u> 反応途中で急冷し、状態を保存し、通常の測定を行う方法。

S. Saigo et al., Biochim. Biophys. Acta, 1202 (1993) 99.

<u>フロー法</u> 流体との反応で、時間 を反応点からの距離に 置き換えて測定。

D. J. Thiel et al., Nature, 362 (1993) 40.

- 試料調整
- ・反応ガスの導入
- 試料セル (flow, batch)
- ・排ガス処理

BL-12Cで1点1秒の蓄積 Ge K吸収端

このように同じ試料でも、試料調整へのちょっとした配慮でスペクトル の質が向上する場合がある。多くの場合、XAFSスペクトルの質は光 子束ではなく、試料の均一性で決まる。

hand press for powdery samples

For solid-gas reactions, ex. catalytic reaction

- 1. keep enough gas diffusion into sample
- 2. high degree of sample homogeneity
- 3. high temperature, ex. 1000 K
- 4. support pellet with tube

Chemisorption measurements in a glass cell. H_2 adsorption isotherm at 298 K

XAFS実験用Flow型反応セル

Pt 再分散挙動のin-situ実時間観測

Batch型XAFSセル

ある程度の容積を確保 (所定の圧力下で反応を進行させるため に十分なモル数のガスが必要)

→ 200 mL

窓間距離を小さく

→ 24 mm

ヒーター部と冷却部を 出来るだけ離す

→60 mm V cutを設け 接触を小さく

T = R.T.~800 P= 10⁻⁵ ~ 900 Torr

57

XAFSと時間分解

- · 各種環境下での測定が容易
- ・ 試料の相を選ばない
- ・ 比較的短時間に測定可能
- ・ 直接的な電子状態、構造観測 時間分解実験に適している

<u>弱い点</u>

核分裂、核融合以外では原子は変わらない
 信号は重畳される
 微小な変化には敏感でない

系によって最適な測定法を用いるべき

どの方法をとるべきか

- 短時間でXAFSを測定したい。 QXAFS
- 時間と共に変化する様を観測したい(定性的)。
 QXAFS, DXAFS
- 反応速度、活性化エネルギーを求めたい(定量的)。
 DXAFS, QXAFS
- 励起状態、準安定状態に関する情報を得たい。 ultrafast (t<ps) pump-probe実験 繰り返し測定が必要

時分割実験に先立って

- 時分割XAFSとほぼ同じ条件で、他の手法を 用いて変化を追跡し、必要な時間分解能等を つかんでおく。
- 変化の始状態、終状態について信頼性の高いXAFS測定・解析をしておく。
- 始状態、終状態について他の手法も使って、
 できるだけの情報を得て、化学種のイメージ
 を確立しておく。

<u>a. 反応の制御(1)</u>

<u>ガス導入</u>

- バルブの開閉時間
- 配管内でのガスの流速
- 試料セル内でのガスの拡散
- 試料内へのガスの拡散

<u>溶液混合</u> <u>外場応答</u>(磁場、電場、レーザー、温度ジャンプ)

ガス導入を高速化したセル

Kr 20 kPaを導入した時のKr K-edgeの吸光度の時間変化.

■ 新型セルを用いることにより、10 msで気体を導入することが出来た.

-- t > 10 msの領域で近似的に定常状態と見なせ、反応速度論の議論が可能となった.

- 試料状態の評価
 IR
- 排ガスの評価 MS、GC

反応系に応じて、試料、排ガス等の同時観測が重要になる。 TR-XAFSに相当する時間分解能を持つ分析装置、ご存じでした らご紹介をください。

関連する課題

- 試料の温度測定
- 試料温度の均一性
- ・ガス導入に伴う、試料温度の変化
- 反応熱の考慮

*

実際、こういった基礎的な技術開発の方が遅れている。

Flow型 反応セル 温度測定

*

鈴木 66

検出系の高性能化

- DXAFSの場合
 Pixel Array Detectorの利用
 XSTRIP (電荷積分型の一次元検出器)
 Ge等高エネルギー対応化
- QXAFSの場合
 半導体検出器の開発

おわりに

- 基本的なガスハンドリングシステムはほぼ用意され、定性的な評価は比較的容易にできる。今後はoperand実験環境の整備が望まれる。
- QXAFSとDXAFSの特性を理解し、目的に合った 方法を選択してください。
- 静的な実験、XAFS以外の予備実験を十分に 行ってください。
- 定量的に解析をする時分割XAFSは未だ開発途
 上にあるとも言えるが、それだけ面白い分野。

PF研究会報告

- ・「硬X線を用いたダイナミック構造解析の可能 性」、KEK Proc., 2004-16 (2005).
- 「時間分解XAFS研究の動向と展望」、KEK Proc., 2008-5 (2008).